Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
medRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746299

ABSTRACT

Background: Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUS), APC-specific ACMG/AMP variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Methods: A streamlined algorithm using the APC -specific criteria was developed and applied to assess all APC variants in ClinVar and the InSiGHT international reference APC LOVD variant database. Results: A total of 10,228 unique APC variants were analysed. Among the ClinVar and LOVD variants with an initial classification of (Likely) Benign or (Likely) Pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUS were reclassified into clinically actionable classes, the vast majority as (Likely) Benign. The total number of VUS was reduced by 37%. In 21 out of 36 (58%) promising APC variants that remained VUS despite evidence for pathogenicity, a data mining-driven work-up allowed their reclassification as (Likely) Pathogenic. Conclusions: The application of APC -specific criteria substantially reduced the number of VUS in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalisable model for other gene-/disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUS that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

2.
Haematologica ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38497150

ABSTRACT

In children and adolescents, impaired growth due to tyrosine kinase inhibitor therapy remains an insufficiently studied adverse effect. This study examines demographic, pharmacological, and genetic factors associated with impaired longitudinal growth in a uniform pediatric cohort treated with imatinib. We analyzed 94 pediatric patients with chronic myeloid leukemia (CML) diagnosed in the chronic phase and treated with imatinib for >12 months who participated in the Germany-wide CML-PAEDII study between February 2006 and February 2021. During imatinib treatment, significant height reduction occurred, with medians of -0.35 standard deviation score (SDS) at 12 months and -0.76 SDS at 24 months. Cumulative height SDS change (Δheight SDS) showed a more pronounced effect in prepubertal patients during the first year but were similar between prepubertal and pubertal subgroups by the second year (-0.55 vs. -0.50). From months 12 to 18 on imatinib, only 18% patients achieved individually longitudinal growth adequate to the growth standard (Δheight SDS≥0). When patients were divided into two subgroups based on median Δheight SDS (classifier Δheight SDS > or ≤-0.37) after one year on imatinib therapy, cohort 1 (Δheight SDS extending -0.37) showed younger age at diagnosis, a higher proportion of prepubertal children, but also better treatment response and higher imatinib serum levels. Exploring the association of growth parameters with pharmacokinetically relevant single nucleotide polymorphisms, known for affecting imatinib response, showed no correlation. This retrospective study provides new insights into imatinib-related growth impairment. We emphasize the importance of optimizing treatment strategies for pediatric patients to realize their maximum growth potential.

3.
Nat Commun ; 15(1): 2637, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38527997

ABSTRACT

For many cancers there are only a few well-established risk factors. Here, we use summary data from genome-wide association studies (GWAS) in a Mendelian randomisation (MR) phenome-wide association study (PheWAS) to identify potentially causal relationships for over 3,000 traits. Our outcome datasets comprise 378,142 cases across breast, prostate, colorectal, lung, endometrial, oesophageal, renal, and ovarian cancers, as well as 485,715 controls. We complement this analysis by systematically mining the literature space for supporting evidence. In addition to providing supporting evidence for well-established risk factors (smoking, alcohol, obesity, lack of physical activity), we also find sex steroid hormones, plasma lipids, and telomere length as determinants of cancer risk. A number of the molecular factors we identify may prove to be potential biomarkers. Our analysis, which highlights aetiological similarities and differences in common cancers, should aid public health prevention strategies to reduce cancer burden. We provide a R/Shiny app to visualise findings.


Subject(s)
Genome-Wide Association Study , Ovarian Neoplasms , Male , Female , Humans , Risk Factors , Phenomics , Phenotype , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide
4.
Physiol Genomics ; 56(5): 384-396, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38406838

ABSTRACT

Tissue-specific gene expression and gene regulation lead to a better understanding of tissue-specific physiology and pathophysiology. We analyzed the transcriptome and genetic regulatory profiles of two distinct gastric sites, corpus and antrum, to identify tissue-specific gene expression and its regulation. Gastric corpus and antrum mucosa biopsies were collected during routine gastroscopies from up to 431 healthy individuals. We obtained genotype and transcriptome data and performed transcriptome profiling and expression quantitative trait locus (eQTL) studies. We further used data from genome-wide association studies (GWAS) of various diseases and traits to partition their heritability and to perform transcriptome-wide association studies (TWAS). The transcriptome data from corpus and antral mucosa highlights the heterogeneity of gene expression in the stomach. We identified enriched pathways revealing distinct and common physiological processes in gastric corpus and antrum. Furthermore, we found an enrichment of the single nucleotide polymorphism (SNP)-based heritability of metabolic, obesity-related, and cardiovascular traits and diseases by considering corpus- and antrum-specifically expressed genes. Particularly, we could prioritize gastric-specific candidate genes for multiple metabolic traits, like NQO1 which is involved in glucose metabolism, MUC1 which contributes to purine and protein metabolism or RAB27B being a regulator of weight and body composition. Our findings show that gastric corpus and antrum vary in their transcriptome and genetic regulatory profiles indicating physiological differences which are mostly related to digestion and epithelial protection. Moreover, our findings demonstrate that the genetic regulation of the gastric transcriptome is linked to biological mechanisms associated with metabolic, obesity-related, and cardiovascular traits and diseases. NEW & NOTEWORTHY We analyzed the transcriptomes and genetic regulatory profiles of gastric corpus and for the first time also of antrum mucosa in 431 healthy individuals. Through tissue-specific gene expression and eQTL analyses, we uncovered unique and common physiological processes across both primary gastric sites. Notably, our findings reveal that stomach-specific eQTLs are enriched in loci associated with metabolic traits and diseases, highlighting the pivotal role of gene expression regulation in gastric physiology and potential pathophysiology.


Subject(s)
Genome-Wide Association Study , Transcriptome , Humans , Transcriptome/genetics , Gene Expression Regulation , Polymorphism, Single Nucleotide/genetics , Stomach , Obesity/genetics , Genetic Predisposition to Disease
5.
J Allergy Clin Immunol ; 153(4): 1073-1082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38300190

ABSTRACT

BACKGROUND: Angioedema is a rare but potentially life-threatening adverse drug reaction in patients receiving angiotensin-converting enzyme inhibitors (ACEis). Research suggests that susceptibility to ACEi-induced angioedema (ACEi-AE) involves both genetic and nongenetic risk factors. Genome- and exome-wide studies of ACEi-AE have identified the first genetic risk loci. However, understanding of the underlying pathophysiology remains limited. OBJECTIVE: We sought to identify further genetic factors of ACEi-AE to eventually gain a deeper understanding of its pathophysiology. METHODS: By combining data from 8 cohorts, a genome-wide association study meta-analysis was performed in more than 1000 European patients with ACEi-AE. Secondary bioinformatic analyses were conducted to fine-map associated loci, identify relevant genes and pathways, and assess the genetic overlap between ACEi-AE and other traits. Finally, an exploratory cross-ancestry analysis was performed to assess shared genetic factors in European and African-American patients with ACEi-AE. RESULTS: Three genome-wide significant risk loci were identified. One of these, located on chromosome 20q11.22, has not been implicated previously in ACEi-AE. Integrative secondary analyses highlighted previously reported genes (BDKRB2 [bradykinin receptor B2] and F5 [coagulation factor 5]) as well as biologically plausible novel candidate genes (PROCR [protein C receptor] and EDEM2 [endoplasmic reticulum degradation enhancing alpha-mannosidase like protein 2]). Lead variants at the risk loci were found with similar effect sizes and directions in an African-American cohort. CONCLUSIONS: The present results contributed to a deeper understanding of the pathophysiology of ACEi-AE by (1) providing further evidence for the involvement of bradykinin signaling and coagulation pathways and (2) suggesting, for the first time, the involvement of the fibrinolysis pathway in this adverse drug reaction. An exploratory cross-ancestry comparison implicated the relevance of the associated risk loci across diverse ancestries.


Subject(s)
Angioedema , Drug-Related Side Effects and Adverse Reactions , Humans , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Genome-Wide Association Study , Angioedema/chemically induced , Angioedema/genetics , Bradykinin
6.
Sci Rep ; 14(1): 3752, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355689

ABSTRACT

Understanding the molecular mechanisms of congenital diseases is challenging due to their occurrence within specific developmental stages. Esophageal malformations are examples of such conditions, characterized by abnormalities in the development of esophagus during embryogenesis. These developmental malformations encompass a range of anomalies, including esophageal atresia, and tracheoesophageal fistula. Here, we investigated the preferential expression of 29 genes that are implicated in such malformations and their immediate interactome (a total of 67 genes). We conducted our analyses across several single-cell atlases of embryonic development, encompassing approximately 150,000 cells from the mouse foregut, 180,000 cells from human embryos, and 500,000 cells from 24 human organs. Our study, spanning diverse mesodermal and endodermal cell populations and early developmental stages, shows that the genes associated with esophageal malformations show their highest cell-type specific expression in lateral plate mesoderm cells and at the developmental stage of E8.75-E9.0 days. In human embryos, these genes show a significant cell-type specific expression among subpopulations of epithelial cells, fibroblasts and progenitor cells including basal cells. Notably, members of the forkhead-box family of transcription factors, namely FOXF1, FOXC1, and FOXD1, as well as the SRY-box transcription factor, SOX2, demonstrate the most significant preferential expression in both mouse and human embryos. Overall, our findings provide insights into the temporal and cellular contexts contributing to esophageal malformations.


Subject(s)
Esophageal Atresia , Tracheoesophageal Fistula , Pregnancy , Female , Mice , Humans , Animals , Esophageal Atresia/genetics , Transcription Factors/metabolism , Single-Cell Analysis , Forkhead Transcription Factors/metabolism
8.
Front Genet ; 14: 1286561, 2023.
Article in English | MEDLINE | ID: mdl-38075701

ABSTRACT

Polygenic risk score (PRS) predictions often show bias toward the population of available genome-wide association studies (GWASs), which is typically of European ancestry. This study aimed to assess the performance differences of ancestry-specific PRS and test the implementation of multi-ancestry PRS to enhance the generalizability of low-density lipoprotein (LDL) cholesterol predictions in the East Asian (EAS) population. In this study, we computed ancestry-specific and multi-ancestry PRSs for LDL using data obtained from the Global Lipid Genetics Consortium, while accounting for population-specific linkage disequilibrium patterns using the PRS-CSx method in the United Kingdom Biobank dataset (UKB, n = 423,596) and Taiwan Biobank dataset (TWB, n = 68,978). Population-specific PRSs were able to predict LDL levels better within the target population, whereas multi-ancestry PRSs were more generalizable. In the TWB dataset, covariate-adjusted R 2 values were 9.3% for ancestry-specific PRS, 6.7% for multi-ancestry PRS, and 4.5% for European-specific PRS. Similar trends (8.6%, 7.8%, and 6.2%) were observed in the smaller EAS population of the UKB (n = 1,480). Consistent with R 2 values, PRS stratification in EAS regions (TWB) effectively captured a heterogenous variability in LDL blood cholesterol levels across PRS strata. The mean difference in LDL levels between the lowest and highest EAS-specific PRS (EAS_PRS) deciles was 0.82, compared to 0.59 for European-specific PRS (EUR_PRS) and 0.76 for multi-ancestry PRS. Notably, the mean LDL values in the top decile of multi-ancestry PRS were comparable to those of EAS_PRS (3.543 vs. 3.541, p = 0.86). Our analysis of the PRS prediction model for LDL cholesterol further supports the issue of PRS generalizability across populations. Our targeted analysis of the EAS population revealed that integrating non-European genotyping data with a powerful European-based GWAS can enhance the generalizability of LDL PRS.

9.
Nat Commun ; 14(1): 5492, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737258

ABSTRACT

Male-pattern hair loss (MPHL) is common and highly heritable. While genome-wide association studies (GWAS) have generated insights into the contribution of common variants to MPHL etiology, the relevance of rare variants remains unclear. To determine the contribution of rare variants to MPHL etiology, we perform gene-based and single-variant analyses in exome-sequencing data from 72,469 male UK Biobank participants. While our population-level risk prediction suggests that rare variants make only a minor contribution to general MPHL risk, our rare variant collapsing tests identified a total of five significant gene associations. These findings provide additional evidence for previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes at and beyond GWAS loci (HEPH, CEPT1, EIF3F). Furthermore, MPHL-associated genes are enriched for genes considered causal for monogenic trichoses. Together, our findings broaden the MPHL-associated allelic spectrum and provide insights into MPHL pathobiology and a shared basis with monogenic hair loss disorders.


Subject(s)
Biological Specimen Banks , Exome , Humans , Male , Exome/genetics , Genome-Wide Association Study , Alopecia/genetics , United Kingdom
10.
BMC Genom Data ; 24(1): 50, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667186

ABSTRACT

BACKGROUND: A relevant part of the genetic architecture of complex traits is still unknown; despite the discovery of many disease-associated common variants. Polygenic risk score (PRS) models are based on the evaluation of the additive effects attributable to common variants and have been successfully implemented to assess the genetic susceptibility for many phenotypes. In contrast, burden tests are often used to identify an enrichment of rare deleterious variants in specific genes. Both kinds of genetic contributions are typically analyzed independently. Many studies suggest that complex phenotypes are influenced by both low effect common variants and high effect rare deleterious variants. The aim of this paper is to integrate the effect of both common and rare functional variants for a more comprehensive genetic risk modeling. METHODS: We developed a framework combining gene-based scores based on the enrichment of rare functionally relevant variants with genome-wide PRS based on common variants for association analysis and prediction models. We applied our framework on UK Biobank dataset with genotyping and exome data and considered 28 blood biomarkers levels as target phenotypes. For each biomarker, an association analysis was performed on full cohort using gene-based scores (GBS). The cohort was then split into 3 subsets for PRS construction and feature selection, predictive model training, and independent evaluation, respectively. Prediction models were generated including either PRS, GBS or both (combined). RESULTS: Association analyses of the cohort were able to detect significant genes that were previously known to be associated with different biomarkers. Interestingly, the analyses also revealed heterogeneous effect sizes and directionality highlighting the complexity of the blood biomarkers regulation. However, the combined models for many biomarkers show little or no improvement in prediction accuracy compared to the PRS models. CONCLUSION: This study shows that rare variants play an important role in the genetic architecture of complex multifactorial traits such as blood biomarkers. However, while rare deleterious variants play a strong role at an individual level, our results indicate that classical common variant based PRS might be more informative to predict the genetic susceptibility at the population level.


Subject(s)
Exome , Genetic Predisposition to Disease , Humans , Genetic Predisposition to Disease/genetics , Biomarkers , Phenotype , Multifactorial Inheritance/genetics
12.
Front Genet ; 14: 1217860, 2023.
Article in English | MEDLINE | ID: mdl-37441549

ABSTRACT

Polygenic risk scores (PRS) calculate the risk for a specific disease based on the weighted sum of associated alleles from different genetic loci in the germline estimated by regression models. Recent advances in genetics made it possible to create polygenic predictors of complex human traits, including risks for many important complex diseases, such as cancer, diabetes, or cardiovascular diseases, typically influenced by many genetic variants, each of which has a negligible effect on overall risk. In the current study, we analyzed whether adding additional PRS from other diseases to the prediction models and replacing the regressions with machine learning models can improve overall predictive performance. Results showed that multi-PRS models outperform single-PRS models significantly on different diseases. Moreover, replacing regression models with machine learning models, i.e., deep learning, can also improve overall accuracy.

13.
BMC Med Genomics ; 16(1): 164, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438803

ABSTRACT

BACKGROUND & AIMS: We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) in the same population. METHODS: To calculate the PRS, we used a previously published model derived from the EUR population and applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual's genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family history (FH) in the SAS population. RESULTS: The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71-2.23, P < 0.01). At the same time, the risk of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53-0.67, P < 0.01). Results in the same direction were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51-0.56, P < 0.01) and the high-PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of these diseases, implying a greater genetic predisposition. CONCLUSION: Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is likely to improve further.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Obesity, Morbid , Humans , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Obesity/genetics , Risk Factors , United Kingdom , Asian People , Multifactorial Inheritance
14.
J Med Genet ; 60(11): 1044-1051, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37321833

ABSTRACT

BACKGROUND: Polygenic risk scores (PRSs) have been used to stratify colorectal cancer (CRC) risk in the general population, whereas its role in Lynch syndrome (LS), the most common type of hereditary CRC, is still conflicting. We aimed to assess the ability of PRS to refine CRC risk prediction in European-descendant individuals with LS. METHODS: 1465 individuals with LS (557 MLH1, 517 MSH2/EPCAM, 299 MSH6 and 92 PMS2) and 5656 CRC-free population-based controls from two independent cohorts were included. A 91-SNP PRS was applied. A Cox proportional hazard regression model with 'family' as a random effect and a logistic regression analysis, followed by a meta-analysis combining both cohorts were conducted. RESULTS: Overall, we did not observe a statistically significant association between PRS and CRC risk in the entire cohort. Nevertheless, PRS was significantly associated with a slightly increased risk of CRC or advanced adenoma (AA), in those with CRC diagnosed <50 years and in individuals with multiple CRCs or AAs diagnosed <60 years. CONCLUSION: The PRS may slightly influence CRC risk in individuals with LS in particular in more extreme phenotypes such as early-onset disease. However, the study design and recruitment strategy strongly influence the results of PRS studies. A separate analysis by genes and its combination with other genetic and non-genetic risk factors will help refine its role as a risk modifier in LS.

15.
Int J Infect Dis ; 133: 1-4, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37146673

ABSTRACT

OBJECTIVES: Lymphatic filariasis (LF) represents a parasitic disease caused by filarial nematodes. Although some infected individuals present an asymptomatic course, others suffer severe chronic lymphatic pathology, including lymphedema, hydrocele, and elephantiasis. Several studies have shown that host genetic factors influence LF susceptibility and chronic pathology. The current study aimed to conduct the first genome-wide association study to systematically determine LF susceptibility. METHODS: We analyzed genome-wide single-nucleotide polymorphism data from 1459 LF cases and 1492 asymptomatic controls of West African (Ghanaian) descent. RESULTS: We identified two independent genome-wide significant associated genetic variants near the genes HLA-DQB2 (rs7742085) and HLA-DQA1 (rs4959107) contributing to LF and/or lymphedema susceptibility (P <5.0 × 10-8, odds ratios [ORs] >1.30). We also observed suggestive evidence of LF associations (P <1.0 × 10-6) at two non-HLA loci, near the genes ZFHX4-AS1 (rs79562145) and CHP2 (rs12933387). In contrast, we could not replicate any previously reported LF associations drawn from candidate gene association studies. On the polygenic level, we show that our genome-wide association study data explain 24-42% of LF heritability, depending on an assumed population prevalence of 0.5-5.0%. CONCLUSION: Our findings point to an involvement of HLA-mediated immune mechanisms in LF pathophysiology.


Subject(s)
Elephantiasis, Filarial , Lymphedema , Male , Animals , Humans , Elephantiasis, Filarial/genetics , Elephantiasis, Filarial/epidemiology , Genome-Wide Association Study , Wuchereria bancrofti/genetics , Ghana/epidemiology , HLA Antigens
16.
EBioMedicine ; 92: 104616, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209533

ABSTRACT

BACKGROUND: Gastric cancer (GC) is clinically heterogenous according to location (cardia/non-cardia) and histopathology (diffuse/intestinal). We aimed to characterize the genetic risk architecture of GC according to its subtypes. Another aim was to examine whether cardia GC and oesophageal adenocarcinoma (OAC) and its precursor lesion Barrett's oesophagus (BO), which are all located at the gastro-oesophageal junction (GOJ), share polygenic risk architecture. METHODS: We did a meta-analysis of ten European genome-wide association studies (GWAS) of GC and its subtypes. All patients had a histopathologically confirmed diagnosis of gastric adenocarcinoma. For the identification of risk genes among GWAS loci we did a transcriptome-wide association study (TWAS) and expression quantitative trait locus (eQTL) study from gastric corpus and antrum mucosa. To test whether cardia GC and OAC/BO share genetic aetiology we also used a European GWAS sample with OAC/BO. FINDINGS: Our GWAS consisting of 5816 patients and 10,999 controls highlights the genetic heterogeneity of GC according to its subtypes. We newly identified two and replicated five GC risk loci, all of them with subtype-specific association. The gastric transcriptome data consisting of 361 corpus and 342 antrum mucosa samples revealed that an upregulated expression of MUC1, ANKRD50, PTGER4, and PSCA are plausible GC-pathomechanisms at four GWAS loci. At another risk locus, we found that the blood-group 0 exerts protective effects for non-cardia and diffuse GC, while blood-group A increases risk for both GC subtypes. Furthermore, our GWAS on cardia GC and OAC/BO (10,279 patients, 16,527 controls) showed that both cancer entities share genetic aetiology at the polygenic level and identified two new risk loci on the single-marker level. INTERPRETATION: Our findings show that the pathophysiology of GC is genetically heterogenous according to location and histopathology. Moreover, our findings point to common molecular mechanisms underlying cardia GC and OAC/BO. FUNDING: German Research Foundation (DFG).


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Genome-Wide Association Study , Genetic Heterogeneity , Barrett Esophagus/genetics , Adenocarcinoma/pathology , Esophageal Neoplasms/genetics , Risk Factors
17.
medRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066289

ABSTRACT

For many cancers there are few well-established risk factors. Summary data from genome-wide association studies (GWAS) can be used in a Mendelian randomisation (MR) phenome-wide association study (PheWAS) to identify causal relationships. We performed a MR-PheWAS of breast, prostate, colorectal, lung, endometrial, oesophageal, renal, and ovarian cancers, comprising 378,142 cases and 485,715 controls. To derive a more comprehensive insight into disease aetiology we systematically mined the literature space for supporting evidence. We evaluated causal relationships for over 3,000 potential risk factors. In addition to identifying well-established risk factors (smoking, alcohol, obesity, lack of physical activity), we provide evidence for specific factors, including dietary intake, sex steroid hormones, plasma lipids and telomere length as determinants of cancer risk. We also implicate molecular factors including plasma levels of IL-18, LAG-3, IGF-1, CT-1, and PRDX1 as risk factors. Our analyses highlight the importance of risk factors that are common to many cancer types but also reveal aetiological differences. A number of the molecular factors we identify have the potential to be biomarkers. Our findings should aid public health prevention strategies to reduce cancer burden. We provide a R/Shiny app (https://mrcancer.shinyapps.io/mrcan/) to visualise findings.

18.
BMC Med Genomics ; 16(1): 42, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36872334

ABSTRACT

BACKGROUND AND AIMS: Summarised in polygenic risk scores (PRS), the effect of common, low penetrant genetic variants associated with colorectal cancer (CRC), can be used for risk stratification. METHODS: To assess the combined impact of the PRS and other main factors on CRC risk, 163,516 individuals from the UK Biobank were stratified as follows: 1. carriers status for germline pathogenic variants (PV) in CRC susceptibility genes (APC, MLH1, MSH2, MSH6, PMS2), 2. low (< 20%), intermediate (20-80%), or high PRS (> 80%), and 3. family history (FH) of CRC. Multivariable logistic regression and Cox proportional hazards models were applied to compare odds ratios and to compute the lifetime incidence, respectively. RESULTS: Depending on the PRS, the CRC lifetime incidence for non-carriers ranges between 6 and 22%, compared to 40% and 74% for carriers. A suspicious FH is associated with a further increase of the cumulative incidence reaching 26% for non-carriers and 98% for carriers. In non-carriers without FH, but high PRS, the CRC risk is doubled, whereas a low PRS even in the context of a FH results in a decreased risk. The full model including PRS, carrier status, and FH improved the area under the curve in risk prediction (0.704). CONCLUSION: The findings demonstrate that CRC risks are strongly influenced by the PRS for both a sporadic and monogenic background. FH, PV, and common variants complementary contribute to CRC risk. The implementation of PRS in routine care will likely improve personalized risk stratification, which will in turn guide tailored preventive surveillance strategies in high, intermediate, and low risk groups.


Subject(s)
Colorectal Neoplasms , Germ-Line Mutation , Humans , Incidence , Risk Factors , Germ Cells
19.
Res Sq ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993383

ABSTRACT

For many cancers there are few well-established risk factors. Summary data from genome-wide association studies (GWAS) can be used in a Mendelian randomisation (MR) phenome-wide association study (PheWAS) to identify causal relationships. We performed a MR-PheWAS of breast, prostate, colorectal, lung, endometrial, oesophageal, renal, and ovarian cancers, comprising 378,142 cases and 485,715 controls. To derive a more comprehensive insight into disease aetiology we systematically mined the literature space for supporting evidence. We evaluated causal relationships for over 3,000 potential risk factors. In addition to identifying well-established risk factors (smoking, alcohol, obesity, lack of physical activity), we provide evidence for specific factors, including dietary intake, sex steroid hormones, plasma lipids and telomere length as determinants of cancer risk. We also implicate molecular factors including plasma levels of IL-18, LAG-3, IGF-1, CT-1, and PRDX1 as risk factors. Our analyses highlight the importance of risk factors that are common to many cancer types but also reveal aetiological differences. A number of the molecular factors we identify have the potential to be biomarkers. Our findings should aid public health prevention strategies to reduce cancer burden. We provide a R/Shiny app (https://mrcancer.shinyapps.io/mrcan/) to visualise findings.

20.
Curr Biol ; 33(8): 1431-1447.e22, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36958333

ABSTRACT

Ludwig van Beethoven (1770-1827) remains among the most influential and popular classical music composers. Health problems significantly impacted his career as a composer and pianist, including progressive hearing loss, recurring gastrointestinal complaints, and liver disease. In 1802, Beethoven requested that following his death, his disease be described and made public. Medical biographers have since proposed numerous hypotheses, including many substantially heritable conditions. Here we attempt a genomic analysis of Beethoven in order to elucidate potential underlying genetic and infectious causes of his illnesses. We incorporated improvements in ancient DNA methods into existing protocols for ancient hair samples, enabling the sequencing of high-coverage genomes from small quantities of historical hair. We analyzed eight independently sourced locks of hair attributed to Beethoven, five of which originated from a single European male. We deemed these matching samples to be almost certainly authentic and sequenced Beethoven's genome to 24-fold genomic coverage. Although we could not identify a genetic explanation for Beethoven's hearing disorder or gastrointestinal problems, we found that Beethoven had a genetic predisposition for liver disease. Metagenomic analyses revealed furthermore that Beethoven had a hepatitis B infection during at least the months prior to his death. Together with the genetic predisposition and his broadly accepted alcohol consumption, these present plausible explanations for Beethoven's severe liver disease, which culminated in his death. Unexpectedly, an analysis of Y chromosomes sequenced from five living members of the Van Beethoven patrilineage revealed the occurrence of an extra-pair paternity event in Ludwig van Beethoven's patrilineal ancestry.


Subject(s)
Deafness , Famous Persons , Music , Male , Humans , Genetic Predisposition to Disease , Genomics , Hair
SELECTION OF CITATIONS
SEARCH DETAIL
...